OSVOJI ZNANJE
  • Baza znanja
    • Triki in nasveti >
      • Matematika
      • Fizika
      • Geografija
      • Angleščina
      • Elektrotehnika
      • Kemija
      • Slovenščina
    • Na hitro ponovim >
      • Matematika
      • Fizika
      • Geografija
      • Slovenščina
      • Kemija
    • Besedilne naloge
    • Učenje in organizacija
  • Aktivnosti
    • Vodene aktivnosti
    • #wodb naloge
    • Problemske naloge
    • Podobnosti in razlike
    • Na kaj pomisliš
    • Računanje "na palec"
    • Problemske niti
  • Igre
    • Igraje do stotice
    • Igriva praštevanka in Čista stotica
    • Brezplačne igre
  • Didaktika
    • Predponkoti
    • Grafično računanje
  • O blogu
  • Kontakt

Od kje izraz "racionalna števila"?

27/4/2021

0 Comments

 
Od kod izvira poimenovanje za "racionalna števila"?
Ne, izraz nima zveze z razumom ali premišljenostjo (razlaga v SSKJ), čeprav pri matematiki to pride še kako prav, :) ampak izvirajo iz drugega pomena latinskega izraza ratio, ki pomeni računanje, delo s števili, izvajanje postopka ...
V angleščini "ratio" pomeni razmerje, ta beseda pa se skriva tudi v definiciji racionalnih števil, saj gre za števila, ki jih lahko izrazimo kot razmerje dveh celih števil.

Za "firbčne" je tule še nekaj povezav: 
  • https://www.etymonline.com/search?q=ratio
  • https://fran.si/iskanje?View=1&Query=racionalen
  • https://sl.wikipedia.org/wiki/Racionalno_%C5%A1tevilo
0 Comments

Zakaj je logično, da ima množenje prednost pred seštevanjem?

17/4/2021

0 Comments

 
Marsikdo si težko zapomni, da ima množenje (in deljenje) prednost pred seštevanjem (in odštevanjem).

Predstavljajmo si, da se v testu pojavi račun 3∙6+5∙4. Ker smo itak živčni, pozabimo katera računska operacija ima prednost. Seštevanje ali množenje?

Iz zagate nas reši grafični model računa:
Picture
Če izraz zapišemo (ali pa si ga zgolj predstavljamo) v grafični obliki (v našem primeru 3 vrste po 6 in 4 vrste po 5), vidimo, da vse elemente (npr. kvadratke) preštejemo tako, da najprej izračunamo polji (računa na krat), nato pa vse skupaj še seštejemo.

Za konec pa še izziv za vas. Kako bi grafično predstavili račun 8∙7-6∙5? Kaj pa 9∙5-6∙7? (V prvem primeru kvadratke modrega pravokotnika dimenzij 6∙5 položimo na rdeči pravokotnika dimenzij 8∙7. Preostanek rdečega pravokotnika je rezultat. V drugemprimeru storimo enako, le da je potrebno kvadratke modrega pravokotnika nekoliko preoblikovati, da "pašejo" na rdeč pravokotnik.)
0 Comments

Zakon o zamenjavi za odštevanje in deljenje?

9/4/2021

0 Comments

 
»Hm«, boste rekli, »a nismo v šoli rekli, da velja zgolj za seštevanje in množenje? Ja. In ne. :)

Če odštevanje obravnavamo strogo kot odštevanje in deljenje kot deljenje, potem ne moremo splošno reči, da zanju velja zakon o zamenjavi.

Če pa:
  • na odštevanje gledamo kot na prištevanje nasprotnih vrednosti števil in
  • na deljenje kot na množenje z obratnimi vrednostmi števil,
potem lahko tudi tu uporabimo zakon o zamenjavi.

A pozor! Računsko operacijo pred številom, ki ga želimo »nesti drugam«, moramo v tem primeru »vzeti s seboj«!

Oglejmo si dva primera.

V prvem želimo odštevanje postaviti na konec računa, da ga bomo izvedli nazadnje. To lahko storimo, a ne pozabimo minusa pred številom 5!
Picture
​V drugem primeru pa želimo deljenje izvesti prej, da ne bo deljenec prevelik. Število 4 lahko postavimo takoj za 12, a ne pozabimo »s seboj nesti« tudi znaka za računsko operacijo deljenja!
Picture
Da me ne boste "prijeli za besedo": V matematičnem členu po Wikipediji v členu lahko nastopata zgolj številski operaciji množenja in potenciranja. Kaj pa deljenje? Če si deljenje z nekim številom (v našem primeru s 4) predstavljamo kot množenje z ulomkom, ki ima to število v imenovalcu, števec pa enak 1 (v našem primeru 1/4), pa imamo čisto pravi člen s štirimi faktorji: 12, 2, 3 in 1/4.
0 Comments

Množimo s pomočjo distributivnostnega zakona

2/4/2021

0 Comments

 
O tem, kaj je distributivnost, lahko nekaj več preberete tule, mi pa si poglejmo kar primer.

Izračunajmo račun 42 krat 5. Poštevanka nam tu direktno ne more pomagati, saj jo znamo le do 10 krat 10, si pa lahko pomagamo tako, da razdelimo prvi faktor na dva dela (42 razdelimo na štiri desetice in dve enici), katera potem ločeno množimo z drugim faktorjem (v našem primeru 5) in na koncu seštejemo (po distributivnostnem zakonu).

Da bo vse skupaj še lažje, si izmislimo zgodbico. 🙂 Recimo, da s kladivom udarimo po večjem od števil (42), nakar to razpade v števili 40 in 2, ki ju ujamemo v roko in postavimo v oklepaj:
Picture
Števil ni nujno drobiti na vrednosti pod 10, saj poštevanka zajema celoštevilske faktorje do vrednosti 10.  Močno si lahko pomagamo že z razčlenitvijo na večkratnike desetiških enot.

Mi smo število 42 s tem namenom razdelili na 40 (4 krat 10) in 2. Namesto množenja števil 42 in 5 bomo tako s 5 zmnožili števili 40 in 2 ločeno, rezultata množenja pa na koncu sešteli.

Nadaljujmo našo zgodbico od včeraj. 😉 Petico si na primer predstavljajmo kot psa, na katerega z vsake številke v oklepaju skoči ena bolha. Vsak skok pomeni eno množenje. Prvo je 40 krat 5, drugo pa 2 krat 5:
Picture
Sedaj moramo izračunati le še preprost računski izraz (ne pozabimo, da ima množenje prednost pred seštevanjem) in smo končali. 🙂

Za tak način množenja torej potrebujemo le znanje poštevanke, seštevanja in množenja z večkratniki potenc števila 10. 
Picture
​Zakaj iz 4 ∙ 5 = 20 sledi, da je 40 ∙ 5 = 200? Preprosto. 40 ∙ 5 lahko zapišemo tudi kot 4 ∙ 10 ∙ 5 oziroma 4 ∙ 5 ∙ 10 (zakon o zamenjavi) oziroma 20 ∙ 10 (zakon o združevanju), pri množenju z 10 pa vemo, da v rezultatu "pridelamo" dodatno ničlo na desni strani (oziroma premik decimalne vejice v desno, kadar računamo z decimalnimi števili).

Na koncu še vprašanje za vas. V našem primeru smo delna zmnožka na koncu sešteli. Pri katerih številih, recimo dvomestnih, pa bi bil račun lažji, če bi uporabili odštevanje? (Kadar je enica večja od 5, npr. pri računu 48 ∙ 5.)
0 Comments

    ARHIV

    September 2023
    May 2023
    November 2022
    May 2022
    February 2022
    October 2021
    May 2021
    April 2021
    February 2021
    October 2020
    June 2020
    May 2020
    April 2020
    March 2020
    December 2019
    November 2019
    August 2019
    January 2019
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    June 2017
    January 2017
    November 2016
    October 2016
    June 2016
    May 2016
    April 2016
    March 2016
    December 2015
    October 2015
    September 2015
    August 2015
    July 2015

    KATEGORIJE

    All
    Algebra
    Aritmetika
    Decimalna števila
    Enačbe
    Funkcije
    Geometrija V Prostoru
    Geometrija V Ravnini
    Grafi Funkcij
    Izrazi
    Koordinatni Sistem
    Kotne Funkcije
    Neenačbe
    Odstotki
    Podobnost
    Problemske Naloge
    Razstavljanje Izrazov
    Sklepni Račun
    Sorazmerje
    Splošno
    Terminologija
    Ulomki

    RSS Feed

Powered by Create your own unique website with customizable templates.
  • Baza znanja
    • Triki in nasveti >
      • Matematika
      • Fizika
      • Geografija
      • Angleščina
      • Elektrotehnika
      • Kemija
      • Slovenščina
    • Na hitro ponovim >
      • Matematika
      • Fizika
      • Geografija
      • Slovenščina
      • Kemija
    • Besedilne naloge
    • Učenje in organizacija
  • Aktivnosti
    • Vodene aktivnosti
    • #wodb naloge
    • Problemske naloge
    • Podobnosti in razlike
    • Na kaj pomisliš
    • Računanje "na palec"
    • Problemske niti
  • Igre
    • Igraje do stotice
    • Igriva praštevanka in Čista stotica
    • Brezplačne igre
  • Didaktika
    • Predponkoti
    • Grafično računanje
  • O blogu
  • Kontakt