Ko se nekaj učimo, nam močno pomaga, če se lahko opremo na nekaj, kar že poznamo.
V matematiki so to konkretni materiali – pri štetju so nepogrešljivi kamenčki, fižolčki, bombončki ... ;) Nadalje pri seštevanju uporabljamo paličke ali trakove različnih dolžin, ti so uporabni tudi pri primerjanju vrednosti ter odštevanju. Ko spoznamo množenje in deljenje, ena dimenzija ni več dovolj, zato uporabimo na primer polja ploščic. O tem sem se razpisal že v eni izmed predhodnih objav.
Zrelejši ko smo, vedno bolj si znamo predstavljati pojme tudi brez tega, da bi jih »prijeli v roke«. A prehitra abstrakcija vseeno ni dobra. Sploh ne popolna. Zato tudi tisti, ki smo »z matematiko že na ti«, :) radi uberemo neke vrste srednjo pot – z risanjem. O pomembnosti vizualnih predstav sem tudi že pisal.
Tako vizualne kot konkretne predstave imajo lahko različne nivoje abstrakcije. Ko si neko vrednost znamo predstavljati tudi brez dejanskega preštevanja, lahko naredimo »korak naprej« in ji priredimo na primer neko barvo in/ali obliko. Jaz sem v moji namizni igri recimo desetice označil z rdečimi kvadratki, enice z modrimi, praštevila pa s krožci različnih barv. Omenjena abstrakcija nam pomaga, da lahko gradimo še kompleksnejše strukture, ki jih z osnovnimi gradniki ne bi mogli, bodisi zaradi pomanjkanja materiala ali prostora na listu, predvsem pa bi se s tem zmanjšala preglednost. Ta pa je ključnega pomena za razumevanje koncepta. In te »vmesne variante« so idealne za predstavljanje (zahtevnejših) konceptov.
Sprva so naši modeli brez številk, ko pa ta nivo abstrakcije presežemo, jih lahko vključimo zraven. Primeri takega modela so številski trak, trikotniki z računskimi operacijami in podobno. Zanimiva je recimo tudi »seštevalno-odštevalna kača«, ki smo jo pred dnevi izdelali z otroki. Zelo podobno lahko naredimo tudi za množenje in deljenje.
Ko nek koncept popolnoma osvojimo, lahko računamo zgolj še s številkami, kar pa še ne pomeni, da na take in drugačne pripomočke lahko pozabimo.
Dejstvo je, da so v resničnem življenju koncepti med seboj prepleteni in vsaka kombinacija le-teh je za nas lahko nov izziv. En tak primer so recimo besedilne (in kasneje še težje problemske) naloge. Za marsikatero si niti predstavljamo ne, kako bi jo lahko rešili drugače kot pa s pomočjo slike. Je pa koristno didaktične pripomočke poznati tudi takrat, ko pomagamo tistim, ki določene snovi še niso osvojili, bodisi v vlogi nesebične sošolke oziroma sošolca bodisi kot učitelji ali starši.
0 Comments
|
arhiv
January 2027
kategorije |